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Abstract. This paper investigates the influence of the interval subdivision selection rule on the 
convergence of interval branch-and-bound algorithms for global optimization. For the class of rules 
that allows convergence, we study the effects of the rules on a model algorithm with special list 
ordering. Four different rules are investigated in theory and in practice. A wide spectrum of test 
problems is used for numerical tests indicating that there are substantial differences between the 
rules with respect to the required CPU time, the number of function and derivative evaluations, and 
the necessary storage space. Two rules can provide considerable improvements in efficiency for our 
model algorithm. 
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1. Introduction 

The investigated class of interval branch-and-bound methods for global optimiza- 
tion [7, 8, 19] addresses the problem of finding guaranteed and reliable solutions 
of global optimization problems 

min f ( z ) ,  (1) 
xEX 

where the objective function f :  l~ n ~ ~ is continuously differentiable and X C_ ]~n 
is an n-dimensional interval vector. We do not require a special problem structure, 
but we assume inclusion functions of the objective function and its gradient to be 
available [1]. These inclusion functions are utilized to compute bounds for f on 
an interval vector (and therefore on a continuum of points, including those points 
that are not finitely representable). So valleys, no matter how narrow, are enclosed 
with certainty. 

* The work has been supported by the Grants OTKA 2879/1991, and MKM 414/1994. 
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The basic idea of such interval branch-and-bound algorithms is to apply several 
interval techniques to reject large regions in which the optimum can be guaranteed 
not to lie. For this reason, the original interval vector X gets subdivided, and 
subregions which cannot contain a global minimizer of f are discarded, while 
the other subregions get subdivided again until the desired accuracy (width) of 
the interval vectors is achieved. In this context, our special interest lies in the 
choice of the direction for the interval subdivision steps, and the present paper 
investigates the possible improvements of this choice for interval branch-and- 
bound methods for global optimization. The generality of the problem class and the 
modest requirement of the existence of the inclusion functions stress the importance 
of any improvement in efficiency. 

The global minimum value of f on X is denoted by f*, and the set of global 
minimizer points of f on X by X*. That is, 

f * = m i n f ( x )  and X * = { x * l f ( x * ) = f * } .  
xEX 

We denote real numbers by x, y , . . . ,  and real bounded and closed interval 
vectors by X = [X___, X], Y = [Y, Y] , . . . ,  where min X = X__., max X = X,  
min Y = Y, max Y = Y, etc. 

The set of compact intervals is denoted by ]I := { [a, b] [ a < b, a, b E 1~} and 
the set of n-dimensional interval vectors (also called boxes) by It '~. For real vectors 
and interval vectors the notations 

x = ( x i ) ,  x i E ~  and X = ( X i ) ,  X~Elr 

are used. 
The width of the interval X is defined by w(X) = max X - min X if X E I, 

and w(X) = max,= 1 w(Xi), if X E lr n. The midpoint of the interval X is defined 
by re(X) = (min X + max X) /2  if X E]I, and m(X) = (m(Xi)), if X Elr '~. 

We call a function F" I[ n ~ ]I an inclusion function of f �9 ]~n ~ ]~ in X, if 
x E X implies f (x)  E F(X).  In other words, frg(X) C_ F(X) ,  where frg(X) is 
the range of the function f on X. The inclusion function of the gradient of f is 
denoted by V F .  

There are several ways to build an inclusion function for a given optimization 
problem (e.g. by using the Lipschitz constant). Interval arithmetic [1, 7, 8, 19] is a 
convenient tool for constructing inclusion functions. This can be done for almost 
all functions specified by a finite algorithm (i.e. not only for given expressions). 
Moreover, applying so-called automatic differentiation or differentiation arithmetic 
in connection with interval arithmetic [7], we are also able to compute the inclusion 
function for the gradient. 

Automatic differentiation combines the advantages of symbolic and numerical 
differentiation and handles numbers instead of symbolic formulas. The computation 
of the gradient is done automatically together with the computation of the function 
value. The main advantage of this process is that only the algorithm or formula for 
the function is required. No explicit formulas for the gradient are required. 
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It is assumed in the following that the inclusion functions have the isotonicity 
property, i.e. X C_ Y implies F(X) c_ F(Y), and that 

w(F(Xi))--+O as w ( X i ) ~ 0 ,  for a l lF .  (2) 

2. The Model Algorithm 

Interval subdivision methods for global optimization (c.f. [3, 5, 7, 8, 15, 19, 20]) 
usually start from an initial box X E ]r n, subdivide X and store the subboxes in a list 
L, and discard subboxes which are guaranteed not to contain a global minimizer, 
until the desired accuracy (width) of the interval vectors in the list is achieved. To 
do so, several special steps and tests are applied (cut-off test, monotonicity test, 
concavity test, interval Newton-like step, or local search procedures). 

Our model algorithm has the most important common features of such inter- 
val subdivision methods for global optimization, but it includes no local search 
procedure (c.f. [3]), no concavity test, and no Newton-like steps, since the latter 
require the inclusion of the Hessian. On the other hand, the cut-off and monotonic- 
ity tests are applied, because their usage does not require additional information 
on the problem (see below). It would not make sense to skip these tests. Although, 
cross-effects of the direction selection rules and the skipped steps are possible, the 
investigation of their numerical implication is the subject of an other study. 

ALGORITHM 2.1. GlobalOptimize (f,  X, e, Y, F*,  L) 

1. Y : = X ;  L : = { } ;  f:=f(m(X)); 
2. k := OptirnalComponent(Y); 
3. Bisection (Y, k, U 1, U2); 
4. f o r i : = l t o 2 d o  

5. FU := F(Ui); if f < FU then next/; 

6. if MonotonicityTest (VF(Ug)) then next/; 

7. L :=  L + (Ui,Fu); 
8. i fL -- { } then return; 

9. (Y, Fy):=Head(L); L :=L- (Y ,  Fy); 
10. f :=min{Lf(m(Y))}; 
11. L := CutO~-Iest (L, f);  
12. if w(F(Y)) > e then goto 2; 

13. F* := [Fy,f]; 
14. return ]I, F*, L. 

{Upper bound for f*} 

{Direction Selection} 

{Store U ~ and Ftr in L} 

{Improve upper bound for f* } 

{Best possible inclusion of f* } 

We use the notation '+'  for entering and ' - '  for discarding elements in the list 
L. Head  (L) delivers the first element of L. For abbreviation, we write Fy  instead 
of min F(Y) .  
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We call the interval vector Y, which is first set in Step i and updated in Step 9, 
the leading box, and the leading box of the ruth iteration is denoted by ym.  

In contrast to the model algorithm used in [6], we used a simplified version of 
the algorithm from [7] and [21]. It incorporates the cut-off and monotonicity tests 
according to the following sub-algorithms. 

ALGORITHM 2.2. CutOffTest (L, f )  
1. for all (]1, Fy )  e L 

2. i f f  < F y t h e n L : = L - ( Y ,  Fv); 

3. return L; 

ALGORITHM 2.3. MonotonicityTest (G) 
1. fori  := 1 t a n d o  

2. if0 ~ Gi then return true; 

3. return false; 

Since we do not do anything special to handle boundary points, the monotonicity 
test may discard subboxes containing global minimizer points if they lie on the 
boundary of X. Thus, we assume in the following that there exists a stationary 
point x* E X for which f(x*) = f* which makes sense, for the aim of our study 
is investigating the impact of the direction selection rules on the convergence of 
Algorithm 2.1. 

Our model algorithm uses a special ordering of the subdivided boxes Y in the 
pending list L. The boxes Y are stored as pairs (Y, Fy) sorted in nondecreasing 
order with respect to the Fy as a first ordering criterion and in decreasing order 
with respect to the age of the boxes as a second ordering criterion. Therefore, a 
newly computed pair is stored in the list L according to the following ordering rule 
(c.f. [21]): 

�9 either Fw <_ Fy < Fz holds, 

�9 or Fy < Fz holds, and (II, Fy)  is the first element of the list, 

�9 or Fw <_ Fv holds, and (Y, Fy) is the last element of the list, 

�9 or (Y, Fy) is the only element of the list, 

where (W, Fw) is the predecessor and (Z, Fz) is the successor of (Y, Fy ) in L. 
That is, the second components of the list elements may not decrease, and a new 

pair is entered behind all other pairs with the same second component. Since the 
first element of the list has the smallest second component, we candirectly use the 
corresponding box to compute f (m(Y))  for the improvement of f in performing 
the cut-off test. Due to this special ordering, we can also save some work when 

,(3) 
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deleting elements in the cut-off test, because we can delete the whole rest of the 
list when we have reached the first element to be deleted. 

3. Subdivision Direction Selection Rules 

The main target of this paper is Step 2 of Algorithm 2.1. There, we can apply 
different rules trying to find an optimal component (coordinate direction) to bisect 
the box Y. We call these rules interval subdivision direction selection rules and we 
investigated four different rules. In OptimalComponent,  each of the rules selects 
a direction k by using a merit function: 

k := min ( j  I J E ff and D(j) = m~xD(i ) )  (4) 
i=1 

where ,7 = { 1 ,2 , . . . ,  n} and D(i) is determined by the given rule. The usual defi- 
nition of such rules does not specify a certain coordinate direction if the maximum 
is achieved several times. Thus, we take the smallest one. 

RULE A 

The interval-width-oriented rule 
with 

[15, 19, 23] chooses the coordinate direction 

D(i) := w(Xi). (5) 

This rule was justified by the idea of subdividing the original interval vector X 
in a uniform way. It has also been used for generating subdivision directions in 
other optimization procedures (e.g. [10]). Algorithm 2.1 with Rule A is conver- 
gent both with and without the monotonicity test (e.g. in [5] and [19]). This rule 
allows a relatively simple analysis of the convergence speed (as in [19], Chapter 
3, Theorem 6). 

RULE B 

The rule of Hansen and Walster [8] selects the coordinate direction by using (4) 
with 

D(i) := w(Gi(X)) . w(Xi), (6) 

where G(X) = ~rF(X). It is a heuristical direction selection role which aims to 
find the component with the largest value of 

Wi = max f (re(X1),. . . ,  m(Xi-1), t, m(Xi+l ) , . . . ,  m(Xn)) 
t E X i  

- min f (re(X1),... ,m(X~-l ) , t ,m(Xi+l) , . . .  m(Xn)) 
t E X i  ) " 
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The factor IV/, that is assumed to reflect how much f varies as xi varies over Xi,  
is then approximated by w(Gi(X) ) ,  w(Xi).  

RULE C 

The rule of Ratz [21] can be formulated with (4) and 

D(i) := w (Gi(X) " (Xi - m(Xi)))  , (7) 

where again G(X) = V F ( X ) .  The underlying idea was to minimize the width of 
the inclusion 

w(F(X) )  = w ( F ( X ) -  f ( m ( X ) ) )  

(X  - re (X)) )  

= 

" / O F  x )  

Obviously, the component i is to be chosen for which OF , o ( ~ ( X ) .  (Xi - m(Xd)  ) 
is the largest. The important difference between (6) and (7) is that in rule C 
the width of the multiplied intervals is maximized and not the multiplied widths 
of the respective intervals, which deliver different values in general (due to the 
subdistributive law). 

In [6] we remarked that the right hand side of (7) can be written as 

max{[ min Gi(X)I, I max Gi(X)[}w(Xi)  

and that Rules B and C give the same merit function value if and only if either 
min GI(X) = 0 or max Gi(X) = O. We also mentioned the relation of rule C to 
Lipschitzian partition methods for global optimization [17, 18] and to the 'maximum 
smear' function (used as a direction selection merit function solving systems of 
nonlinear equations [11]). 

RULE D 

The fourth rule uses a relative width of the intervals and is defined by (4) and 

{w(Xd if 0 ~ x~, 
D(i) := w(Xd/min{Ix l l E Xi} otherwise. (8) 

It is derivative-free like Rule A, and it reflects the machine representation of 
the intervals. Consider the case when the width of one component interval is 
greater than all other component widths, but the minimum and maximum values 
of this interval are nearly adjoining machine numbers. In this case the subdivision 
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Fig. 1. Remaining subintervals after 50 iteration steps of Algorithm 2.1 with the direction 
selection rules A, B, C, and D for the Branin problem. 

of the other components is more important than the subdivision of the 'large' 
component. 

Figures 1 and 2 show the distributions of subboxes for the discussed direction 
selection rules A, B, C, and D, respectively, when solving the Branin problem and 
the Six-Hump-Camel-Back problem (see the Appendix for their definition) with 
Algorithm 2.1. 

Figure 1 shows the situations after 50 iterations of the model algorithm for the 
Branin problem. The numbers of subboxes are 14, 14, 13, and 23, respectively. Rule 
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Fig. 2. Remaining subintervals after 500 iteration steps of Algorithm 2.1 with the direction 
selection rules A, B, C, and D for the Six-Hump-Camel-Back problem. 

A tends to form square-like boxes, while the others produce elongated subboxes. 
The greatest volume decrease is due to Rule C, the least volume decrease is due to 
Rule D. 

Figure 2 shows the situations after 500 iterations of the model algorithm for the 
Six-Hump-Camel-Back problem. The numbers of subboxes are 94, 100, 31, and 
167, respectively. Here, Rules A and D produced square-like boxes, while Rules 
B and C produced elongated subboxes. Again, the greatest volume decrease is due 
to Rule C, the least volume decrease is due to Rule D. 
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EXAMPLE 3.1. Let us consider the function f ( x )  = Xl �9 x2 �9 x3 to demonstrate 
the influence of the different direction selection rules on the width of the interval 
function evaluation of f .  We use 

X = [-10,20] 

[1000,2000] 

with ( oooooooo) 
a = V F ( X )  = [0, 2000] and c = m ( X )  = 5 . 

[-10,20] 1500 

Applying Rule A, we get 

D(1) = w ( X 1 ) =  1, 

D(2) = w ( X 2 )  = 30, 

D(3) = w(X3) = 1000, 

and choose k :=  3. Thus, we bisect in (Ol (o1) 
g l =  [-10,20] and U 2 =  [-10,20] , 

[1000, 1500] [1500, 2000] 

and we get F ( U  1 ) = [ -  15000, 30000] and F ( U  2) = [-20000,  40000]. 
Applying Rule B, we get 

D(1) = w ( a l ) ,  zO(Xl) = 60000.1  = 60000, 

D(2) = w(G2) ,  w(X2) = 2000 .30  = 60000, 

D(3) = w ( G 3 ) ,  w(X3) = 30.  1000 = 30000, 

and choose k := 1. Thus, we bisect in (oo,) (o,1) 
U I =  [-10,20] and U 2 =  [-10,20] , 

[1000, 2000] [1000, 20001 

and we get F ( U  1 ) = [-10000,  20000] and F ( U  2) = [-20000,  40000]. 
Applying Rule C, we get 

D(1) = w ( G 1 .  (Xl  - Cl)) = w ( [ - 2 0 0 0 0 ,  20000]) -- 40000, 

n ( 2 )  = w(G2.  (X2 - c2)) = w([-30000,  30000]) = 60000, 

D(3) = w ( G 3 .  (X3 - c3)) = w([-10000,  10000]) = 20000, 
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and choose k := 2. Thus, we bisect in 

U 1 = [ -  10, 5] and 

[1000,20001 
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[0,1] ) 

U 2 = [5,20] , 

[1000,2000] 

and we get F ( U  1 ) --  [-20000,  10000] and F(U 2) = [0, 40000]. 
Applying Rule D, we get 

D(1) = w ( X 1 ) =  1, 

D(2) -- w ( X 2 ) =  30, 

D(3) = w(X3)/lO00 = 1, 

and choose k := 2. Thus, we bisect as for Rule C getting the same boxes and 
interval function evaluations as above. 

Assuming now that the upper bound f = - 10000 for the global minimum value 
f* is already known, we can discard U 2 in the cut-off test if we use Rule C or D. 

4. Convergence and the Direction Selection Rules 

In the following, we summarize the main definitions and theoretical results given 
in [6] for the somewhat more general model algorithm used in the present paper, 
and we investigate the relations between the subdivision selection rules and con- 
vergence properties of Algorithm 2.1. The difference between the algorithms is 
that in [6] the list ordering was not specified for elements with equal lower bound 
on the objective function values. With the special ordering studied in the present 
paper, we can prove stronger convergence statements. 

For our theoretical study, we defined the sequence of interval vectors that can 
be produced by the model algorithm, and we specified a property (balanced) of 
the subdivision direction selection rules that can ensure convergence for the model 
algorithm. 

8 DEFINITION 4.1. We call an infinite sequence of interval vectors (Y)s=0  an 
infinite subdivision sequence of Y, if y0  = y and if for each nonnegative integer s 
the box ys+ l  is given as y f + l  = y f  fo r j  = 1 , . . . ,  k - 1, k + 1 , . . . ,  n,  and either 

y~+l __ [min Y,~, m(Y~)], or y~+l = [m(Y~), max Y~], where k is the direction 
selected by the given rule with ys, F(ys)  and ~TF(Y~). 

If we assume that the box Y is not discarded by the monotonicity test and e = 0, 
it is easy to see, that the set of leading boxes (Y~)~=0 contains at least one infinite 
subdivision sequence. It may contain infinite subdivision sequences but also finite 
sequences of subboxes that end with a box Y, the subdivision of which resulted 
in such subboxes, that either 0 ~ tTF(U) or f*eF(U) holds for these. The latter 
finite sequences do not affect the convergence of the procedure. 
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DEFINITION 4.2. We call a direction selection rule balanced, if for all interval 
vectors X, for all isotone inclusion functions F ( X )  and V F ( X )  having property 
(2), and for each infinite subdivision sequence of X that is a subsequence of 
the leading boxes i y s ~  the sequence of directions generated by the given k / s = 0 '  
rule contains each k of the possible directions 1 , 2 , . . . ,  n for which w(Xk) > 0 
infinitely many times. 

The rules fitting Definition 4.2 do not necessarily deliver the directions in a uniform 
way, but each direction is chosen again after a finite number of iteration steps. 

We denote the set of accumulation points of the sequence (ys) s~=0 by A. Recall 
that the inclusion functions F ( X )  and grF(X)  are assumed to be isotone and to 
satisfy (2). For the sake of convergence investigation, we set the stopping criterion 
parameter c to zero and we assume that w(X)  > 0 (otherwise the solution requires 
no search and thus no subdivision). Recall also, that we assume that there exists a 
stationary point z* E X* for which f(x*) = f*. 

The following three theorems and two corollaries have been proven in [6] for a 
general model algorithm that did not assume that the pairs in the list L with equal 
second element are ordered according to their age. Hence, these results hold also 
for Algorithm 2.1. 

THEOREM 4.3. Algorithm 2.1 converges in the sense that l i m s ~  w ( Y  s) = O, if 
and only if  the interval subdivision direction selection rule is balanced. 

THEOREM 4.4. Assume that the interval subdivision direction selection rule is 
balanced. Then Algorithm 2.1 converges to global minimizer points in the sense 
that lims~oo F ( Y  s) = f*, A ~ 0 and A C_ X*. 

One direction of the assertions of Theorem 4.3 and Theorem 4.4 are generalizations 
of some convergence results in [19] for the model algorithm with the studied class 
of direction selection rules. Notice that the opposite direction of all the statements 
in Theorem 4.4 is not true. For example, A ~ 0 also holds if the direction selection 
rule is not balanced. 

THEOREM 4.5. Assume that Algorithm 2.1 converges for a given problem (1) to 
global minimizer points in the sense that lims~oo F ( Y  s) = f*, and thus A C 
X*. Then either the algorithm proceeds on the problem like an algorithm with a 
balanced direction selection rule, or there exists a box X C_ X such that f ( z ) = f* 
for all z E X ,  and w( ffi) > O, i E J for all coordinate directions that are selected 
only a finite number of times. 

The essential^meaning of Theorem 4.5 is that with the exception of problems for 
which a box X as defined above exists, the direction selection rule must be balanced 
to ensure convergence to global minimizer points. 
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COROLLARY 4.6. The subdivision direction selection Rules A and D are bal- 
anced, and thus Algorithm 2.1 converges to global minimizer points with each of 
these rules. 

COROLLARY 4.7. Either subdivision direction selection Rules B and C choose 
each direction i E i f  for which w(Xi) > 0 an infinite number of times, and thus 
Algorithm 2.1 converges to global minimizer points with each of these rules, or 
the algorithm converges to a subbox of X with a positive width that contains only 
global minimizer points. 

The next definition and theorem point out the consequences of the new list ordering 
on the convergence properties. 

DEFINITION 4.8. We call a global minimizer point x / of  problem (1) hidden, if 
there exists a subbox X ~ C_ X with positive volume (w(X~) > 0, i = 1 , 2 , . . . ,  r0 
for which x / E X ~ and m i n F ( X  ~) = f*, while there exists an other global 
minimizer point :r ~ of the same problem such that min F ( X ' )  < f* holds for each 
subbox X"  c_ X with positive volume that contains x ~. Global minimizer points 
that do not fulfill the criteria of a hidden minimizer are called non-hidden. 

THEOREM 4.9. If  Algorithm 2.1 with direction selection Rules A, B, C, or D con- 
verges to a global minimizer point x* E X* in the sense that it is an accumulation 
point ( :c* E A) of the sequence of leading boxes r yswo then it converges to all k )s=O, 

non-hidden global minimizer points in the same sense. 
Proof. If we solve the global optimization problem (1) with given inclusion 

functions F and ~TF, then Algorithm 2.1 produces an infinite sequence of leading 
boxes (YS)~= 0 with a subsequence of (Y*~)~o- such that hmt= 0 .  o~ y,z = :r* E X*. 
Consider an arbitrary non-hidden global minimizer point x ~ E X*, and assume 
that x ~ is not an accumulation point of the sequence (Y~)~=0. Then x / is contained 
only in a finite number of subboxes of (ysaoo let yZ is=0, be the last one of these 
subboxes. 

As x ~ is a non-hidden global minimizer point, min F ( Y  t) < min F ( Y ' )  must 
hold for an infinite number of indices sel. This implies that, due to the list ordering 
applied in Algorithm 2.1, y t  is selected for further subdivision - and this is a 
contradiction. [] 

A direct consequence of Theorems 4.4 and 4.9 and Corollaries 4.6 and 4.7 is 

COROLLARY 4.10. 1. I f  the interval subdivision direction selection rule is bal- 
anced, then the set of  accumulation points A of the sequence (YS)~=o generated 
by Algorithm 2.1 contains all non-hidden global minimizer points of  the given 
optimization problem (I). 

2. Algorithm 2.1 both with subdivision direction selection Rules A and D con- 
verges to all non-hidden global minimizer points of problem (1). 
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3. Either Algorithm 2.1 both with subdivision direction selection Rules B and 
C converges to all non-hidden global minimizer points of problem (1), or the 
algorithm converges to a set of subboxes of X with positive width that contain only 
non-hidden global minimizer points. 

EXAMPLE 4.11. We want to find global minimizer points of problem (1) with 
f ( X )  2 4 = XlX 2 on the interval vector X = [0, 1] 2. We use the range functions as 
inclusion functions, so F(X)  frg(X) 2 4 = = X 1X~, and G1 (X) = OF = 

2X1X4, and G2(X) = OF 4X?X 3. set b-~2 (X) = The of global minimizer points is 
X* = [0, 1] x [0,0] tO [0,0] x [0, 1]. Since m i n F ( Y )  = 0 = f* for each subbox 
Y c_ X,  all the global minimizer points are non-hidden. According to Theorem 
4.9, X* is equal to the set of accumulation points A of the sequence of leading 
boxes (YS)7=0. 

Using the direction selection Rule C with Algorithm 2.1, we get 

D(1) = w( e l  (yO)(yO _ m(yO) ) ) = w([0.0, 2.0][-0.5, 0.5]) 

= w([-1 .0 ,  1.0]) = 2 

D(2) = w(G2(Y~ ~ - re(Y~ = w([0.0, 4.0][-0.5,0.5]) 

= w([-2 .0 ,  2.0]) = 4 

for y0  = X. The second coordinate is selected for subdivision. Consider now a 
subbox of the form [0, 1] x [0, d] (where d > 0). For this box D(1) = 2d 4 and 
D(2) = 4d 4, and thus always the direction k = 2 is chosen. Hence, the subsequence 
[0, 1] x [0, d] (d = 1,0.5, 0 .25 , . . .  ,) of (YS)s~= 0 converges to the interval vector 
Y* = [0.0, 1.0] x [0.0, 0.0] without a single subdivision in the first coordinate (c.f. 
Corollary 4.7). According to the comment  after the definition of Rule C, the merit 
function values and thus the selected directions are the same with Rule B, i.e. the 
same result interval vector is obtained by applying Rule B. 

EXAMPLE 4.12. Our algorithm with Rule B may become non-convergent if we 
remove the monotonicity test. Consider the function f ( x ) = x 1 -~- x 2. With OF __ 

[1, 1], Rule B chooses always k = 2 for all interval vectors with w(Xi) > 0, i = 
1,2. The list ordering does not play any role in the direction selection, and hence 
Algorithm 2.1 shows the same behavior as the model algorithm of [6]. Therefore, 
l ims_,~ m i n F ( Y  ~) # l i m ~  maxF(YS),  where Y~ is again the actual box Y 
in the sth iteration. Although the probability to have this phenomenon in real-life 
problems is small, it is nonetheless noteworthy that this behavior differs from that 
of Rule A. 

5. Numerical Experiences 

We list the functions f and starting interval vectors X used in our tests in the 
Appendix to supply a complete documentation of the problems input data. The first 
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group of functions from $5 to RB is the group of standard tqest functions taken 
from [24]. We also used these functions in [6]. The rest of the functions are from 
[14] and from [22] with the exception of the Griewank functions (Griew) which 
are also taken from [24]. The last group of functions (R4-R8) is new. 

We carried out the numerical tests on a HP 9000/730 using an implementation of 
Algorithm 2.1 in PASCAL-XSC [12] Version 2.03. The program is a modification 
(simplification) of the code given in [7]. The inclusion functions were produced 
by natural interval extensions, i.e. they were all isotone and they fulfill condition 
(2). The gradients were calculated by automatic differentiation, thus no numerical 
or symbolic derivatives were used. In contrast to our earlier study [6], now the 
gradient was calculated in a single step, and thus the monotonicity test could not 
save the computation of certain components of the gradient. All the numerical 
results of the subsequent sections were obtained with ~ = 10 -2. 

Tables I to IV contain the efficiency measures provided solving the test prob- 
lems. The first column gives the problem name, and the second column gives the 
dimension of the problem. The efficiency measures for Rules B, C, and D are also 
expressed as percentages of the respective value for Rule A. In the second last lines 
the computational efforts are given which are necessary to solve the whole set of 
test problems. The percentages in these lines show how much effort is needed with 
the actual rule compared to the value obtained by Rule A. This is the expected 
ratio of improvement (if less than 100%) solving a large set of problems similar 
to the studied one. The average of percentages values (denoted by AoP) reflect the 
relative computational burden one can anticipate for a single problem if the actual 
rule is used instead of Rule A, according to the statistical information provided by 
the set of test problems. 

5.1. COMPARING THE STANDARD TIME UNITS 

Table I summarizes the CPU times required for the solution of the global optimiza- 
tion test problems. The CPU times are expressed in standard time units to allow a 
fair comparison with results obtained on other computer platforms. The standard 
time unit (1000 real evaluations of the Shekel-5 function) was 0.18 sec on the 
computational environment described above. 

The STU values given in Table I are substantially smaller than those in our 
earlier study [6], this is in part due to the better interval arithmetic implementation. 
According to the STU values, Rules B and C are better choices than Rule A or D. 
On the basis of the numerical tests made, we can expect 16% or 22% improve- 
ments in the computation time if we use Rules B or C instead of Rule A. 
Rule D causes about 19% increase. Completing a large set of problems similar to 
the studied set, Rule B require 62% less, Rule C 63% less, and Rule D 25% less 
CPU time. 
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TABLE I. Standard time units required by the four methods for the solution of global 
optimization test problems 

Function Dim. Rule A Rule B ( B/A ) Rule C ( C/A ) Rule D ( D/A ) 

$5 4 0.51 0.51 (100%) 0.51 (100%) 0.51 (100%) 
$7 4 0.72 0.73 (101%) 0.70 (97%) 0.74 (103%) 
S10 4 1.02 1.03 (101%) 0.98 (96%) 1.01 (99%) 
H3 3 5.32 2.45 (46%) 2.01 (38%) 11.18 (210%) 
H6 6 3 2 . 3 1  21.30 (66%) 18.23 (56%) 78.92 (244%) 
GP 2 942.91 813.83 (86%) 839.19 (89%) 2630.72 (279%) 
SHCB 2 2.42 2.54 (105%) 2.23 (92%) 3.13 (129%) 
BR 2 1.37 1.26 (92%) 1.21 (88%) 2.75 (201%) 
RB 2 0.06 0.04 (67%) 0.04 (67%) 0.07 (117%) 
THCB 2 0.88 0.71 (80%) 0.68 (68%) 1.30 (147%) 
L3 2 123.15 83.88 (68%) 83.10 (67%) 120.30 (98%) 
L5 2 23.67 17.24 (73%) 17.10 (72%) 23.12 (98%) 
L8 3 1.35 1.35 (100%) 1.35 (100%) 1.35 (100%) 
L9 4 2.37 2.37 (100%) 2.37 (100%) 2.37 (100%) 
L10 5 3.74 3.74 (100%) 3.74 (100%) 3.74 (100%) 
L11 8 9.96 9.96 (100%) 9.96 (100%) 9.96 (100%) 
L12 10 1 5 . 5 5  15.55 (100%) 15.55 (100%) 15.55 (100%) 
L13 2 1.96 0.92 (47%) 0.92 (47%) 0.96 (100%) 
L14 3 1.87 1.55 (83%) 1.55 (83%) 1.87 (100%) 
L15 4 2.94 3.02 (103%) 2.87 (97%) 2.96 (101%) 
L16 5 4.16 3.79 (91%) 3.63 (87%) 4.18 (101%) 
L18 7 7.84 7.19 (92%) 7.19 (92%) 7.86 (101%) 
Schw2.1 2 0.91 1.19 (130%) 1.19 (130%) 0.69 (76%) 
Schw3.1 3 0.10 0.10 (100%) 0.10 (100%) 0.10 (100%) 
Schw3.1p 3 0.10 0.10 (100%) 0.10 (100%) 0.10 (100%) 
Schw2.5 2 0.11 0.12 (109%) 0.10 (91%) 0.14 (127%) 
Schw2.7 3 4123.40 244 .59(6%)  239 .01(6%)  778.51 (19%) 
Schw2.10 4 9.11 3.01 (33%) 3.09 (34%) 9.11 (100%) 
Schw2.14 4 2.59 2.27 (88%) 2.24 (86%) 7.05 (272%) 
Schw2.18 2 0.68 0.64 (94%) 0.64 (94%) 0.71 (104%) 
Schw3.2 3 0.15 0.10 (67%) 0.10 (67%) 0.13 (87%) 
Schw3.7 30 0.42 0.41 (98%) 0.38 (91%) 0.36 (86%) 
Griew5 5 8 7 . 4 1  87.41 (100%) 87.41 (100%) 87.41 (100%) 
Griew7 7 1046.80 1043.21 (99%) 1031.06(98%) 1048.91 (101%) 
R4 2 16.79 9.05 (54%) 8.21 (49%) 59.27 (353%) 
R5 3 9.65 6.69 (69%) 3.64 (38%) 3.63 (38%) 
R6 5 23.26 18.61 (80%) 11.26(48%) 13.18(57%) 
R7 7 6 1 . 0 3  41.54 (68%) 23.93 (39%) 32.29 (53%) 
R8 9 113.72 71.35 (63%) 44.31 (39%) 55.74(49%) 

Sum 6682.31 2525.35 (38%) 2471.88 (37%) 5021.88 (75%) 
AoP (84%) (78%) (119%) 
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TABLE U. Number of function evaluations required by the four methods for the 
solution of global optimization test problems 

Function Dim. Rule A Rule B ( B/A ) Rule C ( C/A ) Rule D ( D/A ) 

$5 4 87 87 (100%) 87 
$7 4 93 93 (100%) 89 96%) 
S10 4 95 97 (102%) 93 98%) 
H3 3 419 197 (47%) 175 42%) 
H6 6 1631 1077 (66%) 915 56%) 
GP 2 87217 76475 (88%) 79755 91%) 
SHCB 2 1283 1271 (99%) 1135 88%) 
BR 2 255 231 (91%) 223 87%) 
RB 2 77 49 (64%) 49 64%) 
THCB 2 731 591 (81%) 547 74%) 
L3 2 2805 1977 (71%) 1969 (70%) 
L5 2 781 549 (70%) 549 (70%) 
L8 3 43 43 (100%) 43 (100%) 
L9 4 57 57 (100%) 57 (100%) 
L10 5 71 71 (100%) 71 (100%) 
Ll l  8 115 115 (100%) 115 (100%) 
L12 10 143 143 (100%) 143 (100%) 
L13 2 43 39 (90%) 39 (90%) 
L14 3 63 57 (90%) 57 (90%) 
L15 4 83 77 (93%) 75 (93%) 
L16 5 93 85 (91%) 83 (91%) 
L18 7 129 117 (91%) 117 (91%) 
Schw2.1 2 603 717 (119%) 717 (119%) 
Schw3.1 3 59 59 (100%) 59 (100%) 
Schw3.1p 3 59 59 (100%) 59 (100%) 
Schw2.5 2 137 137 (100%) 127 (93%) 
Schw2.7 3 29989  2 0 5 1 ( 7 % )  1 9 9 9 ( 7 % )  
Schw2.10 4 605 247 (41%) 249 (41%) 
Schw2.14 4 745 687 (92%) 667 (90%) 
Schw2.18 2 803 803 (100%) 803 (100%) 
Schw3.2 3 111 69 (62%) 69 (62%) 
Schw3.7 30 3 3 (100%) 3 (100%) 
Griew5 5 4 0 9 5  4095 (100%) 4095 (100%) 
Griew7 7 23039 23039 (100%) 23039 (100%) 
R4 2 903 503 (56%) 479 (53%) 
R5 3 259 185 (71%) 113 (44%) 
R6 5 283 313 (111%) 201 (71%) 
R7 7 699 489 (70%) 297 (42%) 
R8 9 1015 653 (64%) 421 (41%) 

87 (100%) 
93 (100%) 
95 (100%) 

877 (209%) 
3807 (233%) 

263395 (302%) 
1635 (127%) 
597 (234%) 

89 (115%) 
1051 (144%) 
2945 (105%) 
741 (95%) 

43 (100%) 
57 (100%) 
71 (100%) 

115 (100%) 
143 (100%) 
43 (100%) 
63 (100%) 
83 (100%) 
93 (100%) 

129 (100%) 
433 (72%) 
59 (100%) 
59 (100%) 

159 (116%) 
5533 (18%) 

625 (103%) 
1531 (206%) 
851 (106%) 
95 (86%) 

3 (100%) 
4095 (100%) 

23039 (100%) 
2919 (323%) 

111 (43%) 
231 (82%) 
389 (56%) 
523 (52%) 

Sum 159721 117607 (74%) 119783 (75%) 316907 (198%) 
AoP (85%) (81%) (119%) 
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5.2. COMPARING THE NUMBER OF FUNCTION EVALUATIONS 

Table II gives the number of objective function evaluations (NFE) necessary to 
solve the test problems. For practical applications, this measure together with the 
number of gradient evaluations is more important than the required CPU time, since 
the functions involved are usually more complex than those of the test problems 
(see e .g. [ 13, 20]). According to the present test results, 15 % and 19% improvement 
can be expected if Rules B and C are used instead of Rule A, and Rule D causes 
19% higher number of function evaluations. The sum of the numbers of function 
evaluations (and also that of the gradient evaluations) must be interpreted with 
care, because the individual complexities of the test problems are different. When 
a similar set of problems is to be solved, the expected improvements are 26% 
for Rule B, 25% for Rule C, while Rule D means about twice as much function 
evaluations. 

5.3. COMPARING THE NUMBER OF GRADIENT EVALUATIONS 

Table m provides the number of gradient evaluations (NGE). As mentioned earlier, 
the gradients are calculated in a single step, and not componentwise as in our 
previous study [6]. Thus the NFE is an upper bound on the NGE values. The 
remarkable stability in the NGE/NFE ratios found in the earlier paper is now even 
stronger, and the number of cases where NGE equals NFE is larger than in [6]. 
This fact is mainly due to the single step evaluation that does not allow skipping 
the calculation of some gradient components, and can also be caused to a smaller 
extent by the use of automatic differentiation that may result in less tight inclusions 
of the gradients than with the hand-coded routines. The range of the NGE/NFE 
values is between 70% and 100%. 

According to the test results, 14% and 19% improvements can be expected if 
Rule B or Rule C is used instead of Rule A, while Rule D causes 18% higher 
number of gradient evaluations. When a similar set of problems is to be solved, 
the anticipated improvements are as high as 25% for Rule B and 24% for Rule C, 
while Rule D means about twice as much gradient evaluations. 

5.4. COMPARING THE SPACE COMPLEXITY 

Table IV shows the minimal lengths of the list L necessary to solve the test 
problems with the studied direction selection rules. The joint space complexity of 
the whole set of test problems is the maximal value of the corresponding column. 
According to the test results, a list of length 8197 is enough to solve the set of 
test problems with Rule A, while the necessary list lengths for the other rules were 
6729, 6740, and 19327, respectively. The latter ones represent-18%,-18% and 
+136% differences. The average of the percentages for the new rules were 89%, 
86% and 116%, respectively. 
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TABLE HI. Number of gradient evaluations required by the four methods for the 
solution of global optimization test problems 

Function Dim.  Rule A Rule B ( B/A ) Rule C ( C/A ) Rule D ( D/A ) 

$5 4 87 87 (100%) 87 (100%) 87 (100%) 
S7 4 93 93 (100%) 89 (96%) 93 (100%) 
S10 4 95 97 (102%) 93 (98%) 95 (100%) 
H3 3 407 189 (47%) 163 (40%) 861 (212%) 
H6 6 1464 997 (68%) 850 (58%) 3215 (220%) 
GP 2 73553 65473 (89%) 67834(92%) 223601 (304%) 
SHCB 2 1137 1107 (97%) 999 (88%) 1527 (134%) 
BR 2 255 231 (91%) 223 (87%) 500 (196%) 
RB 2 77 49 (64%) 49 (64%) 89 (115%) 
THCB 2 707 535 (76%) 503 (71%) 1025 (145%) 
L3 2 2452 1765 (72%) 1761 (72%) 2384 (97%) 
L5 2 548 437 (80%) 437 (80%) 555 (101%) 
L8 3 43 43 (100%) 43 (100%) 43 (100%) 
L9 4 57 57 (100%) 57 (100%) 57 (100%) 
L10 5 71 71 (100%) 71 (100%) 71 (100%) 
Lll  8 115 115 (100%) 115 (100%) 115 (100%) 
L12 10 143 143 (100%) 143 (100%) 143 (100%) 
L13 2 43 39 (90%) 39 (90%) 43 (100%) 
L14 3 63 57 (90%) 57 (90%) 63 (100%) 
L15 4 83 77 (93%) 75 (93%) 83 (100%) 
L16 5 93 85 (91%) 83 (91%) 93 (100%) 
L18 7 129 117 (91%) 117 (91%) 129 (100%) 
Schw2.1 2 515 625 (121%) 625 (121%) 424 (82%) 
Schw3.1 3 59 59 (100%) 59 (100%) 59 (100%) 
Schw3.1p 3 59 59 (100%) 59 (100%) 59 (100%) 
Schw2.5 2 137 137 (100%) 127 (93%) 158 (115%) 
Schw2.7 3 25829 1534 ( 6 % )  1496 ( 6 % )  4722 (18%) 
Schw2.10 4 605 242 (40%) 244 (40%) 605 (100%) 
Schw2.14 4 742 687 (93%) 667 (90%) 1460 (197%) 
Schw2.18 2 803 803 (100%) 803 (100%) 851 (106%) 
Schw3.2 3 111 69 (62%) 69 (62%) 95 (86%) 
Schw3.7 30 3 3 (100%) 3 (100%) 3 (100%) 
Oriew5 5 4 0 9 5  4095 (100%) 4095 (100%) 4095 (100%) 
Griew7 7 23039 23039 (100%) 23039 (100%) 23039 (100%) 
R4 2 843 463 (56%) 443 (53%) 2851 (338%) 
R5 3 259 185 (71%) 113 (44%) 111 (43%) 
R6 5 283 313 (111%) 201 (71%) 231 (82%) 
R7 7 699 489 (70%) 297 (42%) 389 (56%) 
R8 9 1015 653 (64%) 421 (41%) 523 (52%) 

Sum 140811 105319 (75%) 106649 (76%) 274547 (195%) 
AoP (86%) (81%) (118%) 
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TABLE IV. Space complexity of the four methods for the solution of global 
optimization test problems in terms of the necessary length of the list 

201 

Function Dim. Rule A Rule B ( B/A ) Rule C ( C/A ) Rule D ( D/A ) 

$5 4 14 15 (107%) 15 (107%) 14 (100%) 
$7 4 17 18 (106%) 17 (100%) 17 (100%) 
S10 4 18 20 (111%) 18 (100%) 18 (100%) 
H3 3 27 17 (63%) 16 (59%) 42 (156%) 
H6 6 183 99 (54%) 88 (48%) 372 (203%) 
GP 2 6 8 7 8  6729 (98%) 6740 (98%) 19327 (281%) 
SHCB 2 164 158 (96%) 142 (87%) 174 (106%) 
BR 2 25 22 (88%) 20 (80%) 51 (204%) 
RB 2 16 15 (94%) 15 (94%) 18 (113%) 
THCB 2 58 52 (90%) 48 (83%) 74 (128%) 
L3 2 821 531 (65%) 526 (64%) 708 (86%) 
L5 2 167 141 (84%) 140 (84%) 166 (99%) 
L8 3 10 10 (100%) 10 (100%) 10 (100%) 
L9 4 13 13 (100%) 13 (100%) 13 (100%) 
L10 5 16 16 (100%) 16 (100%) 16 (100%) 
Lll 8 25 25 (100%) 25 (100%) 25 (100%) 
L12 10 31 31 (100%) 31 (100%) 31 (100%) 
L13 2 10 11 (110%) 10 (100%) 10 (100%) 
L14 3 14 15 (107%) 14 (100%) 14 (100%) 
L15 4 18 20 (111%) 21 (117%) 18 (100%) 
L16 5 23 24 (104%) 25 (109%) 23 (100%) 
L18 7 34 31 (91%) 30(88%) 34(100%) 
Schw2.1 2 101 118 (117%) 118 (117%) 92 (91%) 
Schw3.1 3 7 7 (100%) 9 (129%) 7 (100%) 
Schw3.1p 3 7 7 (100%) 7 (100%) 7 (100%) 
Schw2.5 2 15 15 (100%) 15 (100%) 19 (127%) 
Schw2.7 3 8197 385 ( 5 % )  377 ( 5 % )  1172 (14%) 
Schw2.10 4 267 96 (36%) 96 (36%) 249 (93%) 
Schw2.14 4 96 71 (74%) 67 (70%) 272 (283%) 
Schw2.18 2 24 24 (100%) 24 (100%) 28 (117%) 
Schw3.2 3 17 14 (82%) 12 (71%) 14 (82%) 
Schw3.7 30 2 : 2 (100%) 2 (100%) 2 (100%) 
Griew5 5 704 704 (100%) 704 (100%) 704 (100%) 
Griew7 7 5 5 0 5  5632 (102%) 5249 (95%) 5505 (100%) 
R4 2 116 76 (66%) 72 (62%) 264 (228%) 
R5 3 34 27 (79%) 19 (56%) 20 (59%) 
R6 5 52 37 (71%) 29 (56%) 36 (69%) 
R7 7 62 47 (76%) 39 (63%) 50 (81%) 
R8 9 72 57 (79%) 49 (68%) 64 (89%) 

Maximum 8197 6729 (82%) 6740 (82%) 19327 (236%) 
AoP (89%) (86%) (116%) 
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5.5. SUMMARY 

Two dominant behaviors can be recognized by studying the numerical results: 
for about half of  the test problems Rule B, and especially Rule C ensure much 
more efficient solution than Rule A, while Rule D is the worst in this sense. The 
improvements showed in Tables I to IV are even stronger for this first subset of 
problems. For a smaller set of problems the differences due to the direction selection 
rules are moderate, just few percents. The few remaining test problems show 
various other patterns. It is remarkable that usually the same behavior characterized 
each problem in different tables. 

The trends of the present test results are close to those reported in [6], where the 
algorithm used a different list ordering, componentwise calculated and hand-coded 
gradient inclusion functions. The few larger differences in the efficiency figures 
can be explained by the algorithmic changes. 

Summarizing the consequences of the numerical tests, we can conclude that 
Rule C is the best choice in terms of most of the efficiency measures, closely 
followed by Rule B. Although Rule D was worse than Rule A for many of the test 
problems, for some cases (e.g. Schwefel No. 2.1 or R5) it was nonetheless the best 
rule from many points of view. The numerical experiences indicate that with the 
recognition of the problem type, a substantial amount of computational effort can 
be saved by using the proper one of the new direction selection rules. For some 
test problems, the right direction selection rule could cause dramatic improvements 
in terms of computation time or space complexity (which is of vital importance 
in some application fields). It should be stressed that the discussed algorithmic 
changes do not require additional information on the problems, and they provide 
the efficiency improvements on a very wide problem class. 

Appendix 

Problem descriptions 

In the following, we list the functions f and starting interval vectors X used in 
our tests, the abbreviated and full names of the corresponding problems, and the 
dimensionality of the problems. 

S5, S7, Sl0:  Shekel (x E A4): 

m 1 

f s m ( X )  = - ~ (x  - A~) (x  - A i )  T + ci '  
/=1 

where A E ~mx4, C E ]~m, and m = 5, m = 7, and m = 10, respectively. 
We use Xi = [0, 1], i = 1 , . . .  ,4. 
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H3, H6: Hartman (x C 1~3 and x E ~6, respectively): 

fH,~(x) = -- ~ c/exp -- ~ Ai j ( z j  - Pij) 2 . 
i=1 j= l  

for n = 3 and n = 6, where A, P E ll~ 4xn and c E II~ n. We use Xi = [0, 1], 
i =  l , . . . , n .  

GP: Goldstein and Price (x E •2): 

f (x )  = (1 + ( Z l  + z 2 +  1)2(19 - 14Xl + 3 Z l  2 -  1 4 z 2 + 6 X l Z 2 +  3x~)). 

(30 + (2Xl - 3x2)2(18 - 32xl + 12x~ + 48x2 - 36XlX2 + 27x22)). 

We us eXi  = [ - 2 , 2 ] , i  = 1 , . . . , 2 .  

SHCB: Six-hump camel-back function, Branin (x E ~2): 

f ( x )  = 4x~ - 2.1x 4 + �89 6 + xlx2 - 4x~ + 4x 4. 

We us eXi  = [ -2 ,  2] , i  = 1 , . . . , 2 .  

BR: Branin (x E ~2): 

( 5  5.1 2 )2  ( 1 )  
f ( x )  = X 1 - -  ~ 2 X l  -q- X 2 - -  6 + 10 1 - ~ cosxl  + 10. 

We use X 1 = [ - - 5 ,  10] and X2 = [0, 15]. 

RB: Rosenbrock (x E I~2): 

f ( x )  = 100(x2 - x~) 2 + (xl - 1) 2. 

We useX~ = [ -1 .2 ,1 .2] , i  = 1 , . . . , 2 .  

THCB: Three-hump camel-back function (x E IR2): 

f ( x )  = 12Xl 2 - 6 . 3 x  4 + x  6 +6x2(x2  - xl) .  

We use Xi = [ -3 ,3] ,  i = 1 , . . . , 2 .  

L3: Levy (x E I~2): 

5 5 

f ( x )  = E i c o s ( ( i - - 1 ) X I + i ) E j c o s ( ( j + I ) x 2 + j ) .  
i=1 j= l  

We us eXi  = [ -10,  10],i = 1 , . . . , 2 .  
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L5: Levy (x E 1I~2): 

f(x) = 

D. RATZ AND T. CSENDES 

5 5 
/ c o s ( ( / -  1)Xl + i ) ~ j c o s ( ( j  + 1 ) x 2 + j )  

i=1 j=l  

+(x1 + 1.42513) 2 + (12 + 0.80032) 2. 

We u s e X i  = [ - lO ,  lO],i  = 1 , . . . , 2 .  

LS, L9, LIO, L l l ,  L12: Levy (x E IR n , n = 3, 4, 5, 8, 10, respectively): 

n--1 
f ( x )  = ~ _ , ( Y i -  1)2(1 + 10sin2Qry/+l)) 

i=1 

+ sin2(Tryl) + (Yn - 1) 2, 

with Yi = 1 + (xi - 1)/4, i = 1 , . . . , n .  

W e u s e X i  = [ - 1 0 , 1 0 ] , i  = 1 , . . . , n .  

L13, L14, L15, L16, L18: Levy (x E R'~, n = 2, 3, 4, 5, 7, respectively): 

n-1 
f ( x )  = y ~ ( x i  - 1 ) 2 ( 1  + sin2(37rXi+l)) 

i=1 
+(Xn - 1)2(1 + sin2(27rXn)) + sin2(37rXl) �9 

We use = [ - 10 ,10 ] ,  i = 1 , . . . , n  for n = 2 , 3 , 4  and Xi  = [ -5 ,5 ] ,  
i = 1 , . . . , n  for n = 5,7.  

Sehw2.1: Beale (x E ~2): 

f ( x )  -- (1.5 - Xl q- XIZ2) 2 -'1- (2.25 -- 11 -t- 1112) 2 q- (2.625 -- Xl + XxX3) 2. 

We use X 1 = [-- 1.5, 7.5] and X2 -- [ -4 ,  5]. 

Schw3.1: Schwefel  (x E R3): 

3 
f(x)---- E ( ( X l -  x2) 2 q - ( x i -  1)2) .  

i=1 

W e u s e X i  = [ -10 ,  10],i  = 1 , . . . , 3 .  

Sehw3.1p:  Schwefel (x E ]~3): 

3 

i=1 

with P = [0.999, 1.001]. We use Xi  = [ -10 ,  10], i = 1 , . . . ,  3. 
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Schw2.5: Booth (x E 1~2): 

f(x) : (X 1 -q- 2X 1 -- 7) 2 + (2Xl + x2 - 5) 2. 

W e u s e X i  = [ -5 ,5 ] , i  = 1 , . . . , 2 .  

Sehw2.7: Box 3D (x E ~3): 

10 ( ( _ k X l ~  ( _ k z 2 ~  
f ( x ) =  k=l ~ e x p \  10 ] - e x p  \ - - i - 0 - ]  - 

exp( 

We useXi  = [ -10 ,30] , i  = 1 , . . . , 3 .  

Schw2.10: Kowalik (x E ~4): 

"( 
f(~) = Y':. ~ - ~ 1  

i=1 bi 
b~ + bix2 
+ bix3 + X4) " 

We use Xi = [0, 0.42], i = 1 , . . . ,  4. 

Schw2.14: Powell (x E 1~4): 

f (x )  = (X 1 "q- 10X2) 2 -t- 5(X 3 - -  X4) 2 q- (X 2 - -  2X3) 4 + lO(Xl - -  X4) 4. 

We useXi  = [ -4 ,5 ] , i  = 1 , . . . , 4 .  

Schw2.18: Matyas (x E Ir 

f(x) = 0.26(x~ + x~) - 0 . 4 8 X l X 2 .  

We use Xi = [ -30 ,30] , i  = 1 , . . . , 2 .  

Sehw3.2: Schwefel (x E I~3): 

3 
f (x )  = Z ( (xl --X2)2-1-( xi --1)2) �9 

i=2 

W e u s e X i  = [-1.89, 1.89],i = 1 , . . . , 3 .  
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Schw3.7: Schwefel (x E 1~3o): 

30 

S(x) = xl ~ 
i=i 

We use Xi = [-0.184,0.184], i = 1, . . .  ,30. 

Griew5:  Griewank (x E NS): 

- -  -- _ _  COS f (x )  = ~ 400 + 1. 
i=1 i=1 

We use X~ = [-600,600], i = 1 , . . . ,  5. 

G r i e w 7 :  Griewank (x E 1~7): 

7 z~ 

f(x) =/..~ I 4O00 
c o s  - -  - l ~  + 1. 

i=1 

D. RATZ AND T. CSENDES 

We use Xi = [-600,500], i = 1 , . . . ,  7. 

R4: Ratz (z E 1t2): 

f ( x )  = sin(z12 + 2x2) exp( -z  2 - x~) 

We use Xi = [-3,3], i = 1 , . . . ,2 .  

R5,  R6 ,  RT, R8:  Ratz (z E ]~n, n = 3, 5, 7, 9, respectively): 

( [ ' X i + l  + 3 ) ) )  2 
f ( x ) =  sin 2 (~r xl ~-__._~3) ~ ( ~ ) 2  (1 +20sin  2 ~1r 4 

i=1 

We use Xi = [-10, 10],i = 1 , . . . , n .  
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